TERMODINAMIKA

TERMODINAMIKA

Jumat, 01 Mei 2015

SIKLUS RANKINE

  1. 1.  PENGERTIAN SIKLUS RANKINE
Siklus Rankine adalah siklus termodinamika yang mengubah panas menjadi kerja. Panas disuplai secara eksternal pada aliran tertutup, yang biasanya menggunakan air sebagai fluida yang bergerak. Siklus ini menghasilkan 80% dari seluruh energi listrik yang dihasilkan di seluruh dunia. Siklus ini dinamai untuk mengenang ilmuwanSkotlandiaWilliam John Maqcuorn Rankine.


Siklus Rankine adalah model operasi mesin uap panas yang secara umum ditemukan di pembangkit listrik. Sumber panas yang utama untuk siklus Rankine adalah batu baragas alamminyak buminuklir, dan panas matahari. Siklus Rankine kadang-kadang dikenal sebagai suatu Daur Carnot praktis ketika suatu turbin efisien digunakan, T diagram akan mulai untuk menyerupai Daur Carnot. Perbedaan yang utama adalah bahwa suatu pompa digunakan untuk memberi tekanan cairan sebagai penganti gas. Ini memerlukan sekitar 100 kali lebih sedikit energy dibanding yang memampatkan suatu gas di dalam suatu penekan ( seperti di Daur Carnot). suatu siklus thermodynamic mengkonversi panas ke dalam pekerjaan. Panas disediakan secara eksternal bagi suatu pengulangan tertutup, yang pada umumnya menggunakan air sebagai cairan. Siklus ini menghasilkan sekitar 80% dari semua tenaga listrik yang digunakan.
Fluida pada Siklus Rankine mengikuti aliran tertutup dan digunakan secara konstan. Berbagai jenis fluida dapat digunakan pada siklus ini, namun air dipilih karena berbagai karakteristik fisika dan kimia, seperti tidak beracun, terdapat dalam jumlah besar, dan murah.
Dalam siklus Rankine ideal, pompa dan turbin adalah isentropic, yang berarti pompa dan turbin tidak menghasilkanentropi dan memaksimalkan output kerja. Dalam siklus Rankine yang sebenarnya, kompresi oleh pompa dan ekspansi dalam turbin tidak isentropic. Dengan kata lain, proses ini tidak bolak-balik dan entropi meningkat selama proses. Hal ini meningkatkan tenaga yang dibutuhkan oleh pompa dan mengurangi energi yang dihasilkan oleh turbin. Secara khusus, efisiensi turbin akan dibatasi oleh terbentuknya titik-titik air selama ekspansi ke turbin akibat kondensasi. Titik-titik air ini menyerang turbin, menyebabkan erosi dan korosi, mengurangi usia turbin dan efisiensi turbin. Cara termudah dalam menangani hal ini adalah dengan memanaskannya pada temperatur yang sangat tinggi.
Efisiensi termodinamika bisa didapatkan dengan meningkatkan temperatur input dari siklus. Terdapat beberapa cara dalam meningkatkan efisiensi siklus Rankine.
Siklus Rankine dengan pemanasan ulang. Dalam siklus ini, dua turbin bekerja secara bergantian. Yang pertama menerima uap dari boiler pada tekanan tinggi. Setelah uap melalui turbin pertama, uap akan masuk ke boiler dan dipanaskan ulang sebelum memasuki turbin kedua, yang bertekanan lebih rendah. Manfaat yang bisa didapatkan diantaranya mencegah uap berkondensasi selama ekspansi yang bisa mengakibatkan kerusakan turbin, dan meningkatkan efisiensi turbin.
Siklus Rankine regeneratif
Konsepnya hampir sama seperti konsep pemanasan ulang. Yang membedakannya adalah uap yang telah melewati turbin kedua dan kondenser akan bercampur dengan sebagian uap yang belum melewati turbin kedua. Pencampuran terjadi dalam tekanan yang sama dan mengakibatkan pencampuran temperatur. Hal ini akan mengefisiensikan pemanasan primer.


2.      PROSES SIKLUS RANKINE
Siklus Rankine adalah suatu mesin kalori dengan uap air menggerakkan siklus. Cairan Aktip yang umum adalah air. Siklus terdiri dari empat proses, setiap siklus mengubah keadaan fluida (tekanan dan/atau wujud).
  • Proses 1: Fluida dipompa dari bertekanan rendah ke tekanan tinggi dalam bentuk cair. Proses ini membutuhkan sedikit input energi.
  • Proses 2: Fluida cair bertekanan tinggi masuk ke boiler di mana fluida dipanaskan hingga menjad uap pada tekanan konstan menjadi uap jenuh.
  • Proses 3: Uap jenuh bergerak menuju turbin, menghasilkan energi listrik. Hal ini mengurangi temperatur dan tekanan uap, dan mungkin sedikit kondensasi juga terjadi.
  • Proses 4: Uap basah memasuki kondenser di mana uap diembunkan dalam tekanan dan temperatur tetap hingga menjadi cairan jenuh.
Pekerjaan Keluaran siklus ( Turbin uap), W1 dan masukan pekerjaan kepada siklus (Pompa), W2 adalah:
W1 = m (h1-h2)
W2 = m (h4-h3)
di mana m adalah aliran massa siklus . Panas menyediakan kepada siklus ( ketel uap), Q1 Dan Panas menolak dari siklus ( pemadat), Q2 adalah:
Q1 = m (h1-h4) 
Q2 = m (h2-h3)
kerja keluaran siklus adalah:
W = W1 - W2
Turbine:
– Energi dalam  pada tekanan uap tinggi  bekerja
– Tekanan menurunkan Pboiler ke Pcondenser
Condensor:
-memadatkan uap air.
-Tekananya tetap.
– Ciptakan ruang hampa atau tekanan rendah pada Pcondenser
– Cairan keluar sebagai SATURATED LIQUID
Pompa ( Feedwater Pompa):
– Tekanan uap air meningkat dari Pcondenser ke Pboiler
– Konsumsi tenaga.
Ketel uap (boiler)
– energi Masuk ke tekanan tinggi memberi air untuk uap air
– tekanan konstat pada tekanan tinggi, Pboiler

Hukum-Hukum tentang Gas

Teori kinetik gas membahas hubungan antara besaran-besaran yang menentukan keadaan suatu gas. Jika gas yang diamati berada di dalam ruangan tertutup, besaran-besaran yang menentukan keadaan gas tersebut adalah volume (V), tekanan (p), dan suhu gas (T). Menurut proses atau perlakuan yang diberikan pada gas, terdapat tiga jenis proses, yaitu isotermal, isobarik, dan isokhorik. Pembahasan mengenai setiap proses gas tersebut dapat Anda pelajari dalam uraian berikut.


a. Hukum Boyle

Perhatikanlah Gambar 1. berikut.
(a) Gas di dalam tabung memiliki volume V1 dan tekanan P1. (b) Volume gas di dalam tabung diperbesar menjadi V2 sehingga tekanannya P2 menjadi lebih kecil.
Gambar 1. (a) Gas di dalam tabung memiliki volume V1 dan tekanan P1. (b) Volume gas di dalam tabung diperbesar menjadi V2 sehingga tekanannya P2 menjadi lebih kecil.
Suatu gas yang berada di dalam tabung dengan tutup yang dapat diturunkan atau dinaikkan, sedang diukur tekanannya. Dari gambar tersebut dapat Anda lihat bahwa saat tuas tutup tabung ditekan, volume gas akan mengecil dan mengakibatkan tekanan gas yang terukur oleh alat pengukur menjadi membesar. Hubungan antara tekanan (p) dan volume (V) suatu gas yang berada di ruang tertutup ini diteliti oleh Robert Boyle.

Saat melakukan percobaan tentang hubungan antara tekanan dan volume gas dalam suatu ruang tertutup, Robert Boyle menjaga agar tidak terjadi perubahan temperatur pada gas (isotermal). Dari data hasil pengamatannya, Boyle mendapatkan bahwa hasil kali antara tekanan (p) dan volume (V) gas pada suhu tetap adalah konstan. Hasil pengamatan Boyle tersebut kemudian dikenal sebagai Hukum Boyle yang secara matematis dinyatakan dengan persamaan :

pV = konstan                                        (1–1)

atau

p1V1 = p2V2                                         (1–2)

Dalam bentuk grafik, hubungan antara tekanan (p) dan volume (V) dapat dilihat pada Gambar 2.
Grafik p-V suatu gas pada dua suhu yang berbeda, di mana T1>T2.
Gambar 2. Grafik p-V suatu gas pada dua suhu yang berbeda, di mana T1>T2.
b. Hukum Gay-Lussac

Gay-Lussac, seorang ilmuwan asal Prancis, meneliti hubungan antara volume gas (V) dan temperatur (T) gas pada tekanan tetap (isobarik). Perhatikanlah Gambar 3.
Pada tekanan 1 atm, (a) gas bervolume 4 m3 memiliki temperatur 300 K, sedangkan (b) gas bervolume 3 m3 memiliki temperatur 225 K.
Gambar 3. Pada tekanan 1 atm, (a) gas bervolume 4 m3 memiliki temperatur 300 K, sedangkan (b) gas bervolume 3 m3 memiliki temperatur 225 K.
Misalnya, Anda memasukkan gas ideal ke dalam tabung yang memiliki tutup piston di atasnya. Pada keadaan awal, gas tersebut memiliki volume 4 m3 dan temperatur 300 K.

Jika kemudian pemanas gas tersebut dimatikan dan gas didinginkan hingga mencapai temperatur 225 K, volume gas itu menurun hingga 3 m3. Jika Anda membuat perbandingan antara volume terhadap suhu pada kedua keadaan gas tersebut (V/T) , Anda akan mendapatkan suatu nilai konstan (4/300 = 3/225 = 0,013).

Berdasarkan hasil penelitiannya mengenai hubungan antara volume dan temperatur gas pada tekanan tetap, Gay-Lussac menyatakan Hukum Gay-Lussac, yaitu hasil bagi antara volume (V) dengan temperatur (T) gas pada tekanan tetap adalah konstan.
Grafik hubungan V–T.
Gambar 4. Grafik hubungan V–T.
Persamaan matematisnya dituliskan sebagai berikut.

V/T = Konstan       (1–3)

atau

V1/T1 = V2/T2       (1–4)

Kapasitas Panas, Panas Spesifik dan Kalorimetri

Sifat-sifat air yang memberikan definisi asal dari kalori adalah banyaknya perubahan temperatur yang dialami air waktu mengambil atau melepaskan sejumlah panas. Istilah umum untuk sifat ini disebut kapasitas panas yang didefinisikan sebagai jumlah panas yang diperlukan untuk mengubah temperatur suatu benda sebesar 10C.
Kapasitas panas bersifat ekstensif yang berarti bahwa jumlahnya tergantung dari besar sampel. Misalnya untuk menaikkan suhu 1 g air sebesar 10C diperlukan 4,18 J (1 kal), tapi untuk menaikkan suhu 100 g air sebesar 10C diperlukan energi 100 kali lebih banyak yaitu 418 J. Sehingga 1 g sampel mempunyai kapasitas panas sebesar 4,18 J/0C sedangkan 100 g sampel 418J/0C.
Sifat intensif berhubungan dengan kapasitas panas adalah kalor jenis (panas spesifik) yang didefinisikan sebagai jumlah panas yang diperlukan untuk menaikkan suhu 1 g zat sebesar 10C. Untuk air, panas spesifiknya adalah 4,18 Jg-1C-1. Kebanyakan zat mempunyai panas spesifik yang lebih kecil dari air. Misalnya besi, panas spesifiknya hanya 0,452 J g-1 0C-1. Berarti lebih sedikit panas diperlukan untuk memanaskan besi 1 g sebesar 10C daripada air atau juga dapat diartikan bahwa jumlah panas yang akan menaikkan suhu 1 g besi lebih besar dari pada menaikkan suhu 1 g air.
Besarnya panas spesifik untuk air disebabkan karena adanya sedikit pengaruh dari laut terhadap cuaca. Pada musim dingin air laut lebih lambat menjadi dingin dari daratan sehingga udara yang bergerak dari laut ke darat lebih panas daripada udara dari darat ke laut. Demikian juga dalam musim panas, air laut lebih lambat menjadi panas daripada daratan.
Rumus :
q = m.c. Δ’t
Keterangan :
q = jumlah kalor (Joule)
m = massa zat (gram)
Δt = perubahan suhu takhir - tawal)

c = kalor jenis

Sistem Termodinamika dan Spesifikasi Keadaan

Sejumlah tertentu dari bahan yang sedang diteliti disebut sistem. Sistem termodinamik adalah suatu sistem yang keadaannya diperikan oleh besaran-besaran termodinamik. Berdasarkan interaksi dengan lingkungannya, sistem dibedakan menjadi tiga macam, yaitu sistem terbuka, tertutup dan terisolasi.

Keadaan suatu sistem ditentukan oleh beberapa syarat yang disebut sifat sistem, yang biasanya diamati secara kuantitatif yang disebut besaran. Besaran dibagi menjadi dua yaitu, besaran ekstensif dan besaran intensif. Terdapat tiga sifat sistem yang penting yaitu volume, tekanan, dan suhu.

Perbandingan antara besaran ekstensif suatu sistem terhadap massa sistem disebut harga jenis rata-rata dari sistem. Harga jenis molal rata-rata didefinisikan sebagai perbandingan antara harga dari besaran ekstensif dengan jumlah mol dari sistem.
Apabila suatu sistem memenuhi syarat-syarat kesetimbangan mekanis, termal, dan kimiawi maka sistem disebut dalam keadaan kesetimbangan termodinamik.

Proses adalah perubahan suatu sistem dari satu keadaan ke keadaan lain. Dikenal dua jenis proses yaitu kuasistatis dan tidak kuasistatis. Proses kuasistatis dibedakan menjadi proses isotermal, isochoris, isobaris dan adiabatis. Bila dua sistem satu sama lain berada dalam kesetimbangan termal maka suhu kedua sistem tersebut sama. Alat untuk mengukur suhu disebut termometer. Termometer yang baik ditentukan oleh kepekaannya, ketelitiannya dan keterulangannya (dapat diperbanyak) serta kecepatannya mencapai kesetimbangan termal dengan sistem lainnya. Skala yang digunakan dalam keteknikan adalah Rankine dan Fahrenheit, sedangkan dalam satuan metris digunakan skala Kelvin dan Celcius.

Perilaku gas pada tekanan rendah mempunyai hubungan dan disebut sebagai gas ideal.


Terdapat dua model untuk menganalisis campuran beberapa gas yaitu model Dalton, dan model Amagat. Dalam model Dalton, sifat-sifat dari setiap komponen dianggap seolah-olah setiap komponen gas campuran berada pada tekanan terpisah dengan volume campuran. Sedangkan model Amagat, sifat-sifat dari setiap komponen dianggap seolah-olah setiap komponen gas campuran berada terpisah pada volume dengan tekanan campuran.

PERSAMAAN GAS IDEAL DAN TEKANAN (P) GAS IDEAL

P V = n R T = N K T
n = N/No
T = suhu (ºK)
R = K . No = 8,31 )/mol. ºK
N = jumlah pertikel
P = (2N / 3V) . Ek ® T = 2Ek/3K
V = volume (m3)
n = jumlah molekul gas
K = konstanta Boltzman = 1,38 x 10-23 J/ºK
No = bilangan Avogadro = 6,023 x 1023/mol
 

ENERGI TOTAL (U) DAN KECEPATAN (v) GAS IDEAL
Ek = 3KT/2
U = N Ek = 3NKT/2
v = Ö(3 K T/m) = Ö(3P/r)
dengan:
Ek = energi kinetik rata-rata tiap partikel gas ideal
U = energi dalam gas ideal = energi total gas ideal
v = kecepatan rata-rata partikel gas ideal
m = massa satu mol gas
p = massa jenis gas ideal
 

Jadi dari persamaan gas ideal dapat diambil kesimpulan:

  1. Makin tinggi temperatur gas ideal makin besar pula kecepatan partikelnya.
  2. Tekanan merupakan ukuran energi kinetik persatuan volume yang dimiliki gas.
  3. Temperatur merupakan ukuran rata-rata dari energi kinetik tiap partikel gas.
  4. Persamaan gas ideal (P V = nRT) berdimensi energi/usaha .
  5. Energi dalam gas ideal merupakan jumlah energi kinetik seluruh partikelnya
    Setiap saat, kita berinteraksi dengan benda-benda di sekitar kita seperti udara, air, dan bangunan. Benda-benda tersebut mempunyai wujud yang berbeda-beda, dan dikelompokkan sebagai gas, cair dan padat. Setiap kelompok mempunyai ciri-ciri dan sifat-sifat yang akan dipelajari dalam bab ini. Diantaranya adalah susunan dan gerakan molekul penyusun zat. Molekul-molekul wujud gas mempunyai susunan yang berjauhan dan setiap molekul bebas bergerak. Cairan dan padatan mempunyai susunan molekul yang berdekatan, dimana pada cairan, molekul masih bisa bergerak dengan bebas, sementara molekul pada padatan tidak bebas bergerak atau tetap pada posisinya.
Contoh :
Air mempunyai wujud cair pada suhu ruang, akan berubah wujudnya menjadi padat apabila didinginkan, dan menjadi gas apabila dipanaskan. Ini merupakan perubahan fisika karena tidak menghasilkan materi dengan sifat yang baru.

Macam-macam Jenis Pemuaian

Pemuaian dapat terjadi pada 3 bentuk zat yang terdapat di alam semesta. Yaitu zat padat, zat cair dan zat gas. Pemuaian yang terjadi pada zat padat berbeda dengan pemuaian yang dialami oleh zat cair dan zat gas. Zat padat sesuai dengan bentuknya biasa mengalami 3 jenis pemuaian, yaitu pemuaian panjang, pemuaian luas dan pemuaian volume. Sedangkan pada zat gas dan cair hanya mengalami satu jenis pemuaian saja, yaitu pemuaian volume. Karena itu secara umum, pemuaian di bedakan menjadi 3 jenis, yaitu:
Pemuaian panjang
adalah bertambahnya ukuran panjang suatu benda karena menerima kalor. Pada pemuaian panjang nilai lebar dan tebal sangat kecil dibandingkan dengan nilai panjang benda tersebut. Sehingga lebar dan tebal dianggap tidak ada. Contoh benda yang hanya mengalami pemuaian panjang saja adalah kawat kecil yang panjang sekali.
Pemuaian panjang suatu benda dipengaruhi oleh beberapa faktor yaitu panjang awal benda, koefisien muai panjang dan besar perubahan suhu. Koefisien muai panjang suatu benda sendiri dipengaruhi oleh jenis benda atau jenis bahan.
Secara matematis persamaan yang digunakan untuk menentukan pertambahan panjang benda setelah dipanaskan pada suhu tertentu adalah
Rumus pertambahan panjang
Bila ingin menentukan panjang akhir setelah pemanasan maka digunakan persamaan sebagai berikut :
Rumus panjang akhir
Yang perlu diperhatikan adalah didala rumus tersebut banyak sekali menggunakan lambang sehingga menyulitkan dalam menghapal. Disarankan untuk sering menggunakan rumus tersebut dalam mengerjakan soal dan tidak perlu dihapal.
Pemuaian luas
adalah pertambahan ukuran luas suatu benda karena menerima kalor. Pemuaian luas terjadi pada benda yang mempunyai ukuran panjang dan lebar, sedangkan tebalnya sangat kecil dan dianggap tidak ada. Contoh benda yang mempunyai pemuaian luas adalah lempeng besi yang lebar sekali dan tipis.
Seperti halnya pada pemuian luas faktor yang mempengaruhi pemuaian luas adalah luas awal, koefisien muai luas, dan perubahan suhu. Karena sebenarnya pemuaian luas itu merupakan pemuian panjang yang ditinjau dari dua dimensi maka koefisien muai luas besarnya sama dengan 2 kali koefisien muai panjang. Pada perguruan tinggi nanti akan dibahas bagaimana perumusan sehingga diperoleh bahwa koefisien muai luas sama dengan 2 kali koefisien muai panjang.
Untuk menentukan pertambahan luas dan volume akhir digunakan persamaan sebagai berikut :
Rumus pemuaian luas
Pemuaian volume
adalah pertambahan ukuran volume suatu benda karena menerima kalor. Pemuaian volume terjadi benda yang mempunyai ukuran panjang, lebar dan tebal. Contoh benda yang mempunyai pemuaian volume adalah kubus, air dan udara. Volume merupakan bentuk lain dari panjang dalam 3 dimensi karena itu untuk menentukan koefisien muai volume sama dengan 3 kali koefisien muai panjang. Sebagaimana yang telah dijelskan diatas bahwa khusus gas koefisien muai volumenya sama dengan 1/273
Persamaan yang digunakan untuk menentukan pertambahan volume dan volume akhir suatu benda tidak jauh beda pada perumusan sebelum. Hanya saja beda pada lambangnya saja. Perumusannya adalah

Rumus pemuaian volume

Sistem Pendingin

Cara kerja dari sistem pendingin yaitu ada empat prinsip kerja untuk menghasilkan proses pendinginan. Danrefrigerant disirkulasikan berulang kali dengan perubahan-perubahan yang mendukung dapat mengahasilkan proses pendinginan. Empat perubahan padarefrigerant itu yaitu kompresi, kondensasi, ekspansi dan evaporasi ( cair, uap, gas dan kembali cair).
  1. Kompresi
Pada proses kompresi, refrigerant ditekan dalam kompresor sampai kondisinya menjadi cair dengan temperatur yang tinggi. Gas refrigerantdalam evaporator yang dihisap oleh kompresor akan membuat tekanannya tetap rendah didalam evaporator, dan untuk membuat cairan refrigerantmenjadi gas secara dinamis pada temperatur yang rendah (0oC). Maka tekanan gas refrigerant ditekan dalam silinder, dan berubah menjadi tinggi, sehingga temperatur dan tekanan naik dan refrigerant akan mudah menjadi cair walaupun proses pendinginan dalam temperatur yang lebih tinggi. Dan gas refrigerant yang dikompresikan disalurkan ke komponen selanjutnya yaitu di dinginkan di kondensor.
  1. Kondensasi
Pada proses kondensasi, refrigerant dirubah dari gas menjadi cair dan didinginkan dari temperatur yang tinggi di dalam kondensor menjadi temperatur lebih rendah. Refrigerant yang bertemperatur dan bertekanan tinggi itu dipancarkan dalam kondensor menjadi cairan dan disalurkan kereceiver dryer untuk disaring. Hal itu juga dinamakan proses kondensasi panas. Panas yang tinggi dari refrigerant itu dapat dikeluarkan oleh kondensor sehingga refrigerant menjadi dingin.
  1. Ekspansi
Pada proses ekspansi, tekanan cairan refrigerant diturunkan oleh katup ekspansi. Hal itu disebut proses ekspansi, dimana gas bertekanan itu dikabutkan dengan mudah dalam evaporator sehingga refrigerant menjadi gas, dan expansion valve ini mengatur aliran cairan refrigerant sambil menurunkan tekanannya. Cairan refrigerant yang dikabutkan ini dalam evaporator diatur oleh tingkat pendinginan yang harus dilakukan dibawah temperatur pengabutan. Untuk itu, penting untuk mengontrol jumlahrefrigerant yang dibutuhkan dengan melakukan pengecekan yang benar.
  1. Evaporasi

Pada proses evaporasi, refrigerant dirubah dari cairan ke gas dalam evaporator. Cairan refrigerant dikabutkan oleh hisapannya sendiri dimana saat proses evaporasi panas latent dibutuhkan dari udara disekitar evaporator. Udara melepaskan panas untuk didinginkan, dan dialirkan ke dalam ruang dalam kendaraan oleh kipas pendingin sambil menurunkan temperatur ruangan itu. Cairan refrigerant itu disalurkan dari expansion valvedi dalam evaporator kemudian sekaligus menjadi uap refrigerant, dan perubahan itu terjadi berulang kali dari kondisi cair ke gas. Tekanan dan temperatur dalam perubahan itu selalu berkaitan, jika tekanan di-set maka temperatur juga akan diatur. Untuk pengabutan yang dilakukan saat temperatur lebih rendah dari perubahan itu (Cair -> Gas) dalam kondisi seperti diatas, tekanan dalam evaporator juga harus dibuat tetap rendah. Karena itu, gas dari refrigerant yang dikabutkan haruslah dikurangi secara terus menerus keluar evaporator oleh hisapan kompresor. 
Proses ini terus-menerus sehingga pendinginan udara didalam kabin akan terjadi selama AC dihidupkan.

Prinsip Ekuipartisi Energi

Pada subbab A, Anda telah mempelajari hubungan antara variabel-variabel yang menyatakan keadaan suatu gas dalam ruangan tertutup. Untuk mengamati keadaan gas tersebut, dapat dilakukan dengan dua cara, yaitu cara makroskopis dan mikroskopis. Jika Anda mengamati keadaan suatu gas dalam ruang tertutup berdasarkan besaran-besaran yang dapat dilihat atau diukur secara langsung, Anda dikatakan melakukan pengamatan secara makroskopis. Namun, jika pengamatan yang Anda lakukan berdasarkan pada variabel atau besaran yang tidak dapat dilihat atau diukur secara langsung, Anda dikatakan melakukan pengamatan secara mikroskopis.
Pengamatan keadaan gas secara makroskopis telah Anda lakukan dan pelajari pada subbab A. Pada subbab B ini, Anda akan mempelajari keadaan gas yang diamati secara mikroskopis serta hubungan antara besaran makroskopis dan besaran mikroskopis.

1. Tinjauan Tekanan Secara Mikroskopis

Berdasarkan sifat-sifat gas ideal, Anda telah mengetahui bahwa setiap dinding ruang tempat gas berada, mendapat tekanan dari tumbukan partikel-partikel gas yang tersebar merata di dalam ruang tersebut. Cobalah Anda amati gerak satu partikel yang berada di dalam ruang berbentuk kubus dengan panjang rusuk kubus L. Massa partikel tersebut adalah m dan kecepatan partikel menurut arah sumbu-x dinyatakan sebagai vx (perhatikan Gambar 7).
Sebuah partikel bergerak dengan kecepatan vx dalam ruang berbentuk kubus berusuk L.
Gambar 6. Sebuah partikel bergerak dengan kecepatan vx dalam ruang berbentuk kubus berusuk L.
Jika partikel gas ideal tersebut menumbuk dinding ruang, tumbukan yang terjadi adalah tumbukan lenting sempurna. Oleh karena itu, jika kecepatan awal partikel saat menumbuk dinding A adalah +vx, kecepatan akhir partikel setelah terjadinya tumbukan dinyatakan sebagai - vx. Perubahan momentum (Dpx) yang dialami partikel adalah Dp= pakhir – pawal = -mvx - (mvx) = -2mvx.
Setelah menumbuk dinding A, partikel gas ideal tersebut menumbuk dinding B. Demikian seterusnya, partikel gas tersebut akan bergerak bolak-balik menumbuk dinding A dan dinding B. Dengan demikian, Anda dapat menghitung selang waktu antara dua tumbukan yang terjadi pada dinding A dengan persamaan :
Dt = 2L / vx                                        (1–15)
Pada saat partikel gas tersebut menumbuk dinding, partikel memberikan gaya sebesar Fx pada dinding. Pada pelajaran mengenai momentum, Anda telah mempelajari bahwa besarnya gaya yang terjadi pada peristiwa tumbukan sama dengan laju perubahan momentumnya (F = Dp / Dt). Dengan demikian, besar gaya Fx tersebut dapat diketahui sebagai berikut.
Fx = mvx2 / L                                    (1–16)
Jika di dalam ruang berbentuk kubus tersebut terdapat sejumlah N partikel gas, yang kecepatan rata-rata seluruh molekul gas tersebut dinyatakan dengan vx, gaya yang dialami dinding dinyatakan sebagai Ftotal. Dengan demikian, Persamaan (1–16) dapat dinyatakan menjadi :
      (1–17)
Anda dapat mencari besarnya tekanan (p) yang dilakukan oleh gaya total (Ftotal) yang dihasilkan oleh N partikel gas ideal tersebut pada dinding A.
p = Ftotal / A
Oleh karena luas dinding adalah perkalian antara dua panjang rusuk dinding tersebtu (A = L2  maka persamaan tekanan pada dinding dapat ditulis dengan :
 (1–18)
atau ;
pV = Nmvx2                           (1–19)
dengan: 
p = tekanan pada dinding, dan
V = volume ruang.
Dalam tinjauan tiga dimensi (tinjauan ruang), kecepatan rata-rata gerak partikel merupakan resultan dari tiga komponen arah kecepatan menurut sumbu-x (), sumbu-y (  ), dan sumbu-z (  ), yang besarnya sama. Oleh karena itu, dapat dituliskan  dengan    . Jika setiap komponen pada kedua ruas penamaan kecepatan tersebut dikuadratkan, dapat dituliskan :
sehingga diperoleh,
Dengan demikian, Persamaan (1–19) dapat diubah menjadi :
            (1–20)
atau
              (1–21)
dengan: 
N = banyaknya partikel gas,
m = massa 1 partikel gas,
v = kecepatan partikel gas, dan
V = volume gas.